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Abstract

To examine potential changes in nesting trends and expected nest counts for Kemp's ridley sea turtle  

following the observed reduction in nests in 2010, we build regression and state-space tim e series 

models for the number of Kemp's ridley nests from the early or mid-1990s through 2009. These models 

are fit to nest counts from seven individual nesting beach areas and three beach sums. The posterior 

distribution of parameter estimates is used to estimate the projected number of nests in 2010, 2011, 

2012, 2013, and 2014 and to estimate the difference between projected number of nests and the 

observed number of nests. The average rate of increase prior to 2010 for all nesting areas combined 

was 17% per year. For most nesting beach areas and all sums, observed nest counts were below the 95% 

confidence interval of expected nests in 2010, 2013 and 2014, and were below the median expected 

nests in 2011 and 2012. For the total nest count summed over all seven nesting beach areas, the median 

differences (projected - observed) are 10,730 nests, 8,110 nests, 11,990 nests, 23,480 nests, and 35,200 

nests in 2010, 2011, 2012, 2013, and 2014 respectively. The loss in 2010 is 49% of the total number of 

nests in 2009. For the total nest count on beaches in Texas, the median differences are 110 nests, 120 

nests, 220 nests, 410 nests, and 620 nests in 2010, 2011, 2012, 2013 and 2014. The loss in 2010 is 56% 

of the total number of nests in Texas in 2009. Correlation analyses indicate a high degree of correlation 

among nesting sites over tim e, but relatively low correlation in the year-to-year change in nest counts 

once the trend is removed. Our analysis indicates a large reduction in the number of nests that would 

have been seen had the population continued on the trajectory that was established prior to 2009.

Introduction

The Kemp's ridley sea turtle, Lepidochelys kempii, is considered the world's most endangered sea turtle  

(Plotkin 2007). The species is genetically distinct from the similar olive ridley and loggerhead turtles 

(Bowen et al. 1991) and has a restricted distribution, nesting almost exclusively in the western Gulf of 

Mexico on sandy beaches from Vera Cruz, Mexico, to southern Texas, USA (Pritchard 2007). Abundant in 

the middle of the 2 0 * century, with estimates of tens of thousands of nests laid on a single day 

(Flildebrand 1963), the species suffered near extinction due to harvest of eggs and adults as well as high 

incidental mortality in fishing gear (M arquez-M. et al. 1999; NRC 1990). In the 1980s, the species began 

to recover, thanks to a bi-national effort that included protection of nearly all nests laid each year and 

laws in both countries that reduced at sea mortality in shrimp nets and other fishing gear. Nest counts 

began to increase in 1985, and accelerated in the 1990s to a rate of over 15% per year on average 

(TEWG 2000). The recovery was considered a great success story, with over 21,000 nests counted in

2009, and potential downlisting from endangered to threatened status was expected when the annual 

nest count was due to hit 25,000 (NMFS/USFWS/SEMARNAT 2011; Crowder and Heppell 2011). But in

2010, the nest counts dropped by nearly 40%, the largest single year reduction recorded since intensive 

recovery efforts began in 1978. Nest counts returned to levels comparable to 2009 in 2011 and 2012, 

but dropped again in 2013 and 2014. The 2014 count for monitored beaches in Mexico and Texas was 

only a little over 12,000, the lowest count since 2006.
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The apparent change in population trajectory of the Kemp's ridley is Important to Investigate because of 

the endangered status of the species and ongoing efforts to document Impacts to wildlife that may be 

linked to the Deepwater Horizon (DWH) spill. Because all of the nests are counted and protected 

through most of the Kemp's ridley range (Heppell et al. 2004), we have an unprecedented opportunity 

to test for changes In a key Index of abundance for an entire species over a long tim e period. Nest 

monitoring has occurred through much of Tamaullpas as the range of the species has expanded during 

the recovery. Nest counts have been conducted In Texas since the 1990s, where nests had steadily 

Increased every year until 2010 (Shaver 2005). Nests are counted dally and most are moved to protected 

areas ("corrals") so eggs can be recorded. Incubated and released as hatchlings. Data are available 

through the National Park Service (Texas) and a US-MexIco funded project run by CONANP and the 

Gladys Porter Zoo (Mexico). The number of years of data available for analysis varies by beach because 

new monitoring areas were established as the range of the species expanded over tim e (Heppell et al. 

2004).

W e used a series of analyses on nest counts from each nesting beach and pooled data to test the  

following questions:

1) Is the observed number of nests In 2010-2014 different from a predicted count, given the  

observed fluctuations In nest counts In previous years?

2) If the observed nest counts are different from expected, what Is the deviation In potential 

nests?

3) Are nest counts correlated across nesting areas In Texas and Mexico?

Our model predicts the nest count for each year and estimates the deviations from the predicted nest 

count In the five post-splll years (2010, 2011, 2012, 2013, and 2014). Comparison of the observed nest 

count In 2010 or later to the predicted nest count Indicates whether something unusual happened In 

that year. The analysis Is based on time-serles Intervention analysis (Box and TIao 1975) using models 

that do not pre-specify the form of the Intervention (Harvey 1989, p. 402 -  404). W e develop a 

regression model based on biological Information and data characteristics. Because the data are 

collected over time, we assess variations on the regression model that Include autocorrelated residuals.

W e predict the distribution of the difference between observed and expected counts In the five post- 

splll years using a Bayesian state-space tim e series Implementation of the regression model (Harvey 

1993). This model Is fit to the data up to 2009, then samples from the joint posterior distribution of 

parameters are used to predict the nest count In 2010, 2011, and beyond. These predictions require 

both the predicted mean nest count In a future year (e.g. 2010) and the predicted variance of that 

count. These predictions assume that the tim e series structure observed from the start of the data set 

through 2009 continue forward In time.

W e analyze the correlations between nests counts In Texas and each Mexican nesting area. We  

evaluate both the correlation between contemporaneous nest counts and the correlation between 

annual changes In nest counts.
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Methods 

Nesting Data

The data are the tim e series of annual counts of the number of Kemp's ridley turtle nests on individual 

nesting beaches or beach aggregates in northern Mexico and Texas (Table 1), provided by USFWS and 

the Texas Parks and Wildlife Department. Figure 1 shows the locations of these nesting areas. Nesting 

in Texas is spread over many beaches, with few nests per year per beach. Mexican nesting areas may 

also Include multiple beaches, and are defined by the name and location of monitoring camps (Heppell 

et al. 2004). For these analyses, we sum the annual nest count for all Texas beaches and use the nesting 

beach camp names provided in binational reports to USFWS that are submitted annually by the Gladys 

Porter Zoo, Brownsville, Texas.

The initial year of our analysis varies between 1991 for Tepehuajes, Rancho Nuevo, and Barra del Tordo 

In Mexico and 1996 or 1997 for other sites In Mexico and Texas (Table 1, Figure 2). Although some data 

for three Mexican sites (Tepehuajes, Rancho Nuevo, and Barra del Tordo) are available before 1991, we 

used only data from 1991 onwards because some beaches were not monitored prior to 1991. 

Tepehuajes, Rancho Nuevo, and Barra del Tordo have been traditionally used as the primary index of 

abundance for the species over the monitoring tim e period, as It was agreed by the Turtle Expert 

Working Group (1998) that these beaches represented the core nesting area of the species. Thus, our 

analyses were conducted on the nest counts for these three beach areas in aggregate (Sum3) as well as 

for the individual areas and a pool of all counts. W e include data through the 2014 nesting season in the 

analyses.

SumMX Is the sum of all six Mexican nesting sites specified In the reports, and SumAII Is the sum of all 

Texas and Mexico nesting sites. The annual nest counts analyzed here are provided In Appendix 1.

Table 1. Nesting areas used in these analyses, with length of data record and data source.

Nesting Beach (North to South) Years of 
Data

Aggregates that 
Include these Data

Data Source

Texas beaches® 1997-2014 SumAII Dr. Donna Shaver, 
National Park Service

La Pesca 1996-2014 SumMX, SumAII Gladys Porter Zoo 
reports''Tepehuajes 1991-2014 Sum3, SumMX, SumAII

Rancho Nuevo 1991-2014 Sum3, SumMX, SumAII
Barra del Tordo 1991-2014 Sum3, SumMX, SumAII
Altamira & Madero 1996-2014 SumMX, SumAII
Miramar 1997-2014 SumMX, SumAII
Notes

a. These include: Bolivar Peninsula, Galveston Island, Brazoria County, N. of Surfside, Surfside Beach, 
Quintana Beach, Bryan Beach, Brazoria County, N. of Sargent Beach, Sargent Beach, Matagorda Peninsula, 
Matagorda Island, San Jose Island, Mustang Island, Corpus Christi Bay, North Padre Island, North of PAIS, 
Padre Island National Seashore (PAIS), South Padre Island, and Boca Chica Beach.

b. USFWS 1997-2014, "Final Report on the Mexico /  United States of America Population Restoration Project 
for the Kemp's Ridley Sea Turtle, Lepidochelys kempii, on the Coasts of Tamaullpas, Mexico." Cooperative
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Grant 201814J833 (annual reports).
Figure 1. Locations of study beaches on the Gulf coast of northern Mexico and Texas

may, 11, p'S'S'

_ _

*r‘

Texas Nesting BeachesMexico Nesting Beaches
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Figure 2. Nest count data by nesting area. A: 1991-2009, B: 2008-2014. Rancho Nuevo, Mexico counts 

are scaled on the second access. Data provided by Mexico /  United States of America Population 

Restoration Project fo rth e  Kemp's Ridley Sea Turtle, Lepidochelys kempii, on the Coasts of Tamaulipas, 

Mexico." Cooperative Grant 201814J833 (annual reports). Raw data in Appendix 1. Data provided for 

Texas by National Park Service.
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Preliminary Inspection o f the Data

W e evaluated characteristics of the data so we can formulate and justify a statistical model for how nest 

counts vary over time. This preliminary inspection considers the nature of the trend over time, the 

distribution of observations around that trend, and the statistical characteristics of the deviations of 

observations around the trend.

The preliminary inspection evaluates two counts: the Sum3 count (the sum of annual nests at 

Tepehuajes, Rancho Nuevo, and Barra del Tordo sites in Mexico) and the SumAII count (the sum of nest 

counts for all Texas and Mexico nesting beaches). The Sum3 count is available since 1991, longer than 

any other beach or beach sum, and includes from 87% to 100% of the annual total number of nests for 

the species (M arquez-M. et al. 2001; Heppell et al. 2007). These 3 nesting areas were the only known 

source of nests prior to the mid 1990s (Turtle Expert Working Group 1998), and continue to represent 

over 90% of nests counted today. As the species has expanded north and south of these core areas, the 

proportion of nests counted at Rancho Nuevo, Tepehuajes and Barra del Tordo has decreased gradually, 

but the annual change in nest counts has not been consistently higher or lower than the change 

observed across all nest counts.

SumAII was chosen for variance evaluation because that count is the focus of the statistical modeling. 

Data are available from 1997, the first year that data are available from all of the nesting beaches. 

Similar patterns (data not shown) are found in SumMX, the sum of all beaches in Mexico and most of 

the individual beaches. The preliminary inspection of the data considers only the nest counts through 

2009, and is detailed in Appendix 2.

For both the Sum3 and SumAII counts, the trend in the observed numbers of nests is roughly 

exponential, although there is some additional variation from year to year (Figure 3). The trend is 

approximately linear when the observed numbers of nests are plotted on a log scale (Figure 4). A 

variety of different models were examined for trend evaluation; best fits were obtained for those with a 

log linear trend, and there was no evidence for a trend in variance (Appendix 2).
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Figure 3. Annual number of nests for Tepehuajes, Rancho Nuevo, and Barra del Tordo beaches 

summed (blue) and for all nesting beaches summed (red).
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Figure 4. Annual number of nests for Tepehuajes, Rancho Nuevo, and Barra del Tordo beaches 

summed (blue) and for all nesting beaches summed (red), plotted on a log scale for the Y axis.
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Statistical Models

The models used for the analysis are motivated by biological considerations and the features seen in the 

preliminary inspection of the data. The biological considerations for Kemp's ridley turtles include:

•  The nest counts for each year and each nesting area are, with minor exceptions, known.

•  These counts depend on the number of nesting females, which is an unknown proportion of the 

number of mature females that likely varies through tim e because females do not typically nest 

annually (Heppell et al. 2004; NMFS/USFWS/SEMARNAT 2011 2011).

•  Other population modeling (Heppell et al. 2004; NMFS/USFWS/SEMARNAT 2011 2011) fit to 

nest counts back to 1978 suggests that the population of mature adults has been increasing 

exponentially since the early 1990s.

The features of the Sum3 and SumAII data that inform potential models are:

•  The nest count is increasing approximately exponentially, with some variation from year to year.

•  Annual nest counts are overdispersed, with more variability than expected under a Poisson 

model (Appendix 2).

•  The variability in log transformed nest count around a simple linear regression line has 

approximately constant variance.

•  Residuals from a log linear regression show no evidence of autocorrelation at lags of 1, 2, or 3 

years. Model comparison shows that a model with uncorrelated errors is more appropriate 

than models with AR(1) or MA(1) correlation structures (Appendix 2).

Regression Models

W e use linear regression to fit an intervention model to the data through 2014. This model is separately 

fit to each beach or beach sum, except Miramar, for which the linear model was not appropriate (Table

S I). We allow the number of nests in each year after 2009 to deviate from the trend up to 2009 and 

make no assumptions about the form or intensity of those deviations. This is done by including year- 

specific deviations for 2010, 2011, 2012, 2013 and 2014 (Equation 1).

lo g  IVj; — ^0  -F t  -F ^2010 ^2010 +  ^2011 ^2011 +  ^2012 ^2012 +  ^2013 ^2013 +  ^2014 ^2014 +

St~ Normal(0,  o^)

( 1)

/2 0 1 0  is an indicator variable that has the value of 1 in the year 2010 and the value of 0 in all other years. 
The other four indicator variables are defined similarly. The regression coefficients associated with each 

indicator variable quantify the deviation in log transformed nest count for that year.

Converting the results from fitting Equation (1) into an estimate of the difference between observed and 

expected nests in 2010-2014 requires predicting the distribution of the expected number of nests for 

each year after 2009. This computation is more easily done using a Bayesian framework. In this 

framework, the joint posterior distribution of all model parameters, including the variance of 

observations around the regression line, is estimated using the nest counts up to 2009. The posterior

8

D W H -A R 0088010



distribution of the number of nests in 2010 or any subsequent year is then estimated from the joint 

posterior distribution of model parameters. Because the nest counts on Miramar show substantial lack 

of fit to a log-linear trend, we used state-space tim e series models to implement both the linear 

regression model and a more flexible model where needed, as for Miramar.

State-space Time Series Models

State-space tim e series models (Harvey 1993, p. 82-85), also called structural time series models (Harvey 

1989, p. 10), or dynamic linear models (West and Harrison 1997, p. 32-34 provide a flexible set of 

models for the log transformed nest counts, log /V„ over time. A simple state-space model is equivalent 

to a linear regression model with uncorrelated errors. Extensions of that simple model provide more 

flexible models for the trend over tim e and simple ways to model the autocorrelation between 

observations over time. State-space models have two components: an observation model and a process 

model (Harvey 1993, p. 82). The observation model connects the observed nest counts to an 

unobserved and unmeasured latent quantity, which in this problem can be considered to be the number 

of mature females in the population. The process model describes how that latent quantity changes 

over time. Different assumptions about how the number of mature females changes over tim e lead to 

different choices of the process model. Although using a model with two components to describe one 

tim e series may seem an unnecessary complication, the use of two components leads to parameters 

that are more interpretable than the parameters in other models for autocorrelated time-series data 

(Harvey 1993, p. 106).

Based on the preliminary inspection of the data, a reasonable observation model is

\ o g N t = Z t + £ f  (2)

£t ~

The log transformed number of nests for a beach and year is modeled as a random deviation from a 

latent log-scale number of mature females, Z,. The random deviation, e , , accounts for the unpredictable 

year-to-year variation in the fraction of mature females that nest and the number of nests laid per 

female.

Different assumptions about the change in the number of mature females lead to different choices of 

the process model. Consequently, we considered three process models. The first ("constant trend") 

model is equivalent to a linear regression (Equation S2). In this model, the mean year-to-year change in 

log transformed nest count is constant. This model can be written in state-space form as the process 

model in Equation (3) used with the observation model of Equation (2).

Z( =  Z (_ i -I- b (3)

The Zt terms in Equation (3) are the latent, unobserved, log-scale number of mature females; the b is the  

constant annual increase (trend). The second ("process error") model generalizes Equation (3) to allow 

random year-to-year fluctuation in the latent variable, Z , . In this model, the year-to-year change in
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mean log transformed nest count Is not a constant. Instead, the year-to-year change Includes a random 

effect (process error) for each year.

Z f =  Z f_ i +  b +  Tf (4)

T j  ~  N  ( 0 ,  (^p rocess)

Unlike £f, the error In the observation equation (Equation 2) that only Influences the observation for

year t, the process error, it. Influences the mean count for that year and all subsequent years. Two

possible mechanisms that would generate process errors are year-to-year variation In survival and 

nesting probability of mature adults or variation In year-class strength for recruits to the nesting 

population.

The third ("varying trend”) model generalizes Equation (4) to allow the mean trend (year-to-year 

change) to vary smoothly overtim e.

Z f =  Z f_ i +  b f +  Tf (5)

T f  ~  N  ( 0 ,  (^p rocess)  

b t =  bt_-^ +  o)t (6)

~  bl(0, (Offend)

Equation (6) allows the mean trend, bt, to vary over time. One possible mechanism for which such a 

model would be appropriate Is a situation where the population exponential growth rate Is Increasing 

(or decreasing) over time.

The three variance parameters, (Tobs> (^process/ ^rid quantify the year-year Idiosyncratic variability

of the observed nest count, the process error in the latent population size, and the variability In the 

exponential growth rate parameter. The third (varying trend) model Is the most general; the first and 

second models are simplifications of the third model with one or two variance parameters set to 0. The 

second (process error) model Is the third (varying trend) model with crt^end =  0- The first (constant 

trend) model Is the third model with (Jt̂ r-end =  0 (Tprocess — 0.

Both the process error and varying trend models allow autocorrelation between observations In 

adjacent years. The nature and type of that autocorrelation depend on the model and the relative 

magnitudes of the variance parameters, cTq̂ ,̂ CFprocess> ^nd (Jtrend (Harvey 1993, p. 120-123).

The constant trend model (Equations 2 and 3) was fit to the nest counts for six beaches and all three 

beach sums. This model Is the state-space equivalent of the linear regression model with uncorrelated 

errors. The varying trend model was fit to the nest counts from Miramar beach because those data 

show substantial lack of fit to a linear model (see Appendix 2).

The state-space models are standard time-serles models that helped us explore a set of viable 

alternatives to explain observed variance In nest counts and Identify the best fitting, most parsimonious

10
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model. The simplest Is the exponential growth model with a constant unobserved population growth 

rate and a constant proportion nesting. The process error model allows the unobserved population 

growth rate to vary erratically from year to year for unknown reasons. The varying trend model allows 

the mean population growth rate to change systematically over time, without specifying the form of 

that systematic change.

Model parameters were estimated by Bayesian Markov Chain M onte Carlo (MCMC) methods (West and 

Harrison 1997). Diffuse proper priors were used for the Initial values of the latent population size, Zq, 

and trend, bo. Uniform distributions for the standard deviations were used as the prior distributions for 

the three variance components, as recommended by Gelman (2006). Computing was done using R and 

the BRugs library with the R2WlnBUGS Interface. Randomly chosen starting values were used to 

Initialize three independent chains. The first 10,000 samples from each chain were discarded as burn-ln. 

The subsequent 30,000 samples were thinned 30-fold to give 3,000 samples from the joint posterior 

distribution of all parameters. Convergence was assessed using the Brooks-Gelman-Rubln statistic 

(West and Harrison 1997), which was close to 1 In all cases.

In all cases, model parameters were estimated using only data up to and Including 2009. We then 

projected the model forward In tim e to estimate the distributions of nest counts In 2010 through 2014 

under the assumption that the dynamics In 2010 through 2014 were a continuation of the dynamics 

through 2009. The posterior distributions of nest counts for each site In 2010 through 2014 was 

simulated by drawing a sample from the posterior distributions of all parameters (e.g., Z 2 0 0 9 - ^ n d  

fo rth e  constant trend model), simulating realizations of (and and where appropriate) for each 

year (2010 through 2014) and computing logiV2 oio; log ^ 2 0 1 1 - log ^ 2 0 1 2 1  log ^ 2 0 1 3  ̂ ^od log ^ 2 0 1 4 - This 

was repeated to generate 3,000 samples of the posterior distribution of nest counts In each of the five 

years following 2009. The posterior distribution was computed as the difference between the projected 

number of nests and observed nest counts. Naturally, the accuracy of this value as an Indicator of "lost 

nests" may be reduced overtim e because the analysis assumes projection of the observed trend for up 

to 5 years beyond our observations. However, with nest counts alone, this simple projection Is the only 

analysis possible or necessary to address the question of how nest numbers have changed over time.

W e focus on results from the total number of nests for all nesting beaches (SumAII). Results for 

Individual beaches and the other two beach sums are given in the supplemental material.

Correlations Between Beaches

W e calculated the correlation between the nest count for Texas and the nest count In the same year for 

each Mexican nesting area. To smooth out some of the Irregular fluctuations In the nest count, we also 

calculated the two-year running average nest count for each beach, and then calculated the correlations 

between Texas and each Mexican nesting area. These nest count correlations are all large because all 

populations are Increasing through 2009. W e also evaluated the correlations between annual 

fluctuations In the nest count by calculating the difference In log count between subsequent years for 

each beach, then calculating the correlations between Texas and each beach. W e considered both

11

DWH-AR0088013



fluctuations In the nest count and fluctuations in the two-year running average. All calculations were 

done twice: once for the entire data record (through 2014) and once for the data through 2009.

R and BUGS code for all analyses are In Appendix 5.

Results 

Modeling

For the SumAII nest count, the estimated trend (I.e. the coefficient for t In Equation 4) Is 0.166 (se = 

0.010). Up through 2009, the number of nests was Increasing an average of 18% (= exp(0.166)) per year. 

The nest counts In each year after 2009 are lower than expected based on this trend (Table 2). For 

example. In 2010, the estimated regression coefficient Is -0.590 (se = 0.164, p = 0.0041). This means the 

observed number of nests was 55% (computed as exp(-0.590), 95% confidence Interval: 40%, 76%) of 

the expected number based on the trend seen through 2009. Results for individual nesting areas, SumS 

and SumMX are given In Appendix 3.

Table 2. Estimated regression coefficients for year-specific deviations from expected trend for the 

SumAII response, with their standard errors and p-values for the test of no deviation. The estimated 

regression coefficients for each Indicator variable give the difference on a log scale between the 

projected number of nests (based on data through 2009) and what was observed In that year. These log- 

scale differences can be expressed as percentages of the expected nest count by exponentiating the 

estimate. The 95% confidence Interval Is calculated by exponentiating the 95% confidence interval for 

the regression estimate.

Year Regression 
Coefficient 
Estimate (Pyear)

Std Error of
Pyear

p-value Actual as 
Percent of 
Expected

95% Confidence 
Interval of Expected 
Value

2010 -0.590 0.163 0.0041 55% (40%, 76%)

2011 -0.321 0.168 0.083 73% (52%, 101%)

2012 -0.430 0.174 0.031 65% (46%, 91%)

2013 -0.882 0.179 0.0005 41% (29%, 59%)

2014 -1.355 0.186 <0.0001 26% (18%, 37%)

The state-space model was used to estimate the difference between the observed nest count and the 

expected nest count If the trend seen through 2009 continued through 2014. Forthe SumAII response, 

this was done using the constant trend model (Equations 2 and 3) because those data were 

appropriately fit by the linear regression model with uncorrelated errors. Comparison of the observed 

nest counts for 2010 through 2014 to the posterior prediction Interval for each year (Figure 5) allows 

quantification of the difference. In 2010, 2013 and 2014, the observed nest count Is substantially below 

the lower bound of the 95% prediction Interval for that year's projected count. In 2012, the observed 

nest count Is slightly below the lower bound. The difference between observed and predicted nest
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counts can be expressed as either as a difference for an individual year or cumulative difference since 

2009 (Table 3). Results for other beaches and beach sums are in Appendix 4.

Plots of the posterior predictive distributions for the 7 individual beaches and the other two beach sums 

are in the Supplemental Material, Figure 55.

Table 3. Estimated difference between observed nest counts and projected nest counts since 2010 for 

the sum of all nesting beaches, relative to the expected nest count if the trend to 2009 had continued 
(SumAII response). All numbers are rounded to the nearest 10. The median cumulative nest loss is not 

the sum of the median per year losses because per year losses are correlated.

Nest Difference By Year Cumulative Nest Difference
Year Median 95% Prediction 

Interval
Median 95% Prediction 

Interval
2010 10,730 (3070, 22270) 10,730 (3070, 22270)
2011 8,110 (-1190, 21440) 19,020 (5020, 38530)
2012 11,990 (560,28530) 31,040 (9780, 62030)
2013 23,480 (9830, 45560) 55,390 (23430, 99510)
2014 35,200 (18620,61330) 91,200 (47650, 151980)

Figure 5. Posterior predictive intervals for the total nest count (SumAII) in 2010 through 2014. Blue 
dots are the observed total number of nests from 2007 through 2014. Intervals are 95% posterior 

predictive intervals from the constant trend model. Dashed line shows the expected trend based on nest 

counts to 2009.
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Correlations Between Nest Counts in Texas and Mexican Beaches

Figure 6 shows the correlatlons between nest counts In Texas and each beach In Mexico as a function of 

the latitude of the Mexican beach. Correlations for nest counts are above 0.8 for most beaches while 

correlations between the annual fluctuations are smaller. Correlations based on the two-year running 

average are similar to those based on the nest count, with one exception.

Figure 6. Correlations between Texas and each Mexican beach using the entire data record (through 
2014).
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W hen correlations are calculated using only data through 2009 (Figure 7), those for nest counts are 

similar to those seen in the longer data record. Correlations in the annual fluctuations are smaller than 

those seen in the longer record and weakly negative for the annual fluctuation in the two-year running 

average.
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Figure 7. Correlations between Texas and each Mexican beach using the data through 2009.
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Discussion

All the models we explored indicate a clear deviation in expected nests based on the trend prior to 2010, 

even when year-to-year variance is considered. The largest deviations are in 2010, 2013 and 2014; nests 

were reduced relative to those expected in 2011 and 2012, but were not outside of the predicted 

intervals for all nesting areas. Despite the large drop in nest counts observed in 2010, the largest 

differences between observed and expected nests occur in 2013 and 2014, due to the model 

expectation of continued population growth. Nest "loss" from expected values is in the tens of 

thousands if we had seen the trend continue, but likely changes in this projection (due to mortality or 

other vital rates) cannot be determined from nest counts alone.

Despite variance in year to year counts at each site, overall, the nesting beach areas from Texas to 

southern Tamaulipas are well correlated prior to 2010. Continued monitoring at all sites is essential if 

there is an expectation of differential DWH impact in different areas.

W e report the median difference in nest counts (projected -  observed) rather than the mean difference 

because the median better represents the typical year. The projected nest difference has a right- 

skewed distribution so mean and the median are not the same. The mean would be more appropriate if 

we were considering many beaches or many years. However, our interest is in the nest difference for 

one beach or one beach sum in a specific year, which is more appropriately described by the median.
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Use of the median Is conservative; the median Is smaller (fewer nests "lost") than Is the mean for each 

year, because of the right-skewed distribution.

The 95% prediction Intervals portray the uncertainty In the projected nest differences. The uncertainty 
In this difference Is only that from the projection. The width of those Intervals Is strongly Influenced by
the year-to-year variability of nest counts around the fitted log-linear regression line. The width of the
prediction Intervals also depends on the model used to fit the data. Prediction Intervals from the 
varying trend model are wider than those from the constant trend model because accounting for a 
varying trend requires additional sources of variability (the process error and the variability In the  
trend). The projected difference nests for Texas is relatively small, e.g. a median of 110 nests in 2010 
and 120 nests In 2011. However, these losses represent large Impacts because the nest counts observed 
In 2008 and 2009 are less than 200 (Appendix 1).

Our analysis Indicates that a change occurred In 2010 that resulted In a large reduction in the expected 

number of nests, following a long-term, positive trend. Additional Information on vital rate changes for 

juvenile and adult turtles throughout the Gulf of Mexico Is needed to diagnose how and why nest 

numbers suddenly dropped and have thus far failed to recover. Importantly, the relationship between 

nest number and adult population size Is not well known, and may not be constant through time.

Additional analysis and data needs Include:

•  Biological data to better understand process error In nest counts.

•  Vital rate and recruitment Information.

•  More years of observation across the species' range

The scope of this analysis was limited to evaluation of nest counts alone. This analysis addressed the 

question of f?ow things changed; determining why they changed requires hypothesis testing with an age 

structured model In addition to data on possible changes In reproductive rates and juvenile growth that 

could be contributing to the alteration of the nest count trajectory. While vital rates have not been 

monitored over time, there are other sources of Information that could be used to Improve our 

understanding of possible mechanisms for the change In nest counts. Future analysis, with more time, 

money and expertise, should be conducted by a Turtle Expert Working Group with multiple analysts to 

evaluate the situation more thoroughly
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Supplemental material

Appendix 1. Nest counts used in the analysis. These were extracted from the "KR in MX" sheet In MX 

Beach KR Counts TS.xIsx dated 3 /24 /2015  and "Sheet 1" In IX  Beach KR counts DS.xIsx dated 3 /13 /2015 . 

Sum3 is the sum of the three beaches monitored since 1991 (Tepehuajes, Rancho Nuevo, and Barra del 

Tordo), SumMX is the sum of all six Mexican beaches, and SumAII is the sum of all nesting beaches.

Year
La

Pesca Tepehuajes
Rancho
Nuevo

Barra
del

Tordo
Miramar Altamira Texas SumS SumMX SumAII

1991 190 831 157 1178

1992 276 897 102 1275

1993 274 857 110 1241

1994 321 1148 93 1562

1995 345 1430 155 1930

1996 20 474 1288 219 79 1981

1997 39 358 1514 349 3 76 9 2221 2339 2348

1998 40 642 2409 431 15 206 13 3482 3743 3756

1999 57 793 2298 278 16 131 16 3369 3573 3589

2000 144 1622 3778 434 62 130 12 5834 6170 6182

2001 57 708 3742 477 65 246 8 4927 5295 5303

2002 117 989 4012 524 140 490 38 5525 6272 6310

2003 228 1528 5380 696 157 200 19 7604 8189 8208

2004 139 1109 4333 867 187 285 42 6309 6920 6962

2005 245 1610 6947 679 223 311 50 9236 10015 10065

2006 369 2013 7866 1083 402 332 102 10962 12065 12167

2007 150 1624 11268 1213 345 432 128 14105 15032 15160

2008 495 2541 11739 2031 487 589 195 16311 17882 18077

2009 361 1647 16273 2017 431 408 197 19937 21137 21334

2010 202 1221 9840 1313 320 406 141 12374 13302 13443

2011 377 1323 16709 1329 330 502 199 19361 20570 20769

2012 377 1630 16983 1584 612 611 209 20197 21797 22006

2013 236 976 11198 3112 318 547 153 15286 16387 16540

2014 128 1382 7272 2333 427 511 119 10987 12053 12172
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Appendix 2. Evaluation of nest count variance and autocorrelation.

Because the response is a count, a preliminary model with a log linear mean and a Poisson response 

distribution was fit to the data (Equation SI).

Poisson(Hf)  (51)

log ^ t =  1̂0 +  A  t,

where Nt is the nest count in year t and pt is the mean nest count for year t.

Inspection of the standardized (Pearson) residuals from this model indicates no concerns with the 

assumption of constant variance: the spread In the residuals Is more or less the same across the range of 

predicted values (Figure 51).

Many of the standardized residuals from the regression are smaller than -3 or larger than +3, and the  

standard deviation exceeds 9, considerably larger than the value of 1 that is expected when the 

observations follow a Poisson distribution. Because of the overdispersion, the generally large nest 

counts, and the log-linear trend in the mean nest count, subsequent models assume that the log 

transformed nest count follows a normal response distribution with a standard deviation that is 

estimated from the data. 5imilar results are obtained using a negative binomial response distribution, 

another option to model overdispersed counts (results not shown). The normal distribution for log 

transformed responses was chosen because modeling correlations is more straightforward when the  

response is modeled using a normal distribution.

Figure 51. Pearson (standardized) residuals from a log-linear Poisson regression of the annual number 

of nests for Tepehuajes, Rancho Nuevo, and Barra del Tordo beaches summed (blue) and all nests (red).
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The second preliminary model is a linear regression model for log transformed nest counts (Equation

52).
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log /V( =  /?o +  /?1 t +

Normal(0, o^)

(S2)

Residuals from this model show no Issues with the assumption of constant variance (Figure S2). This 

result supports the use of log transformed nest count as the response variable. Plots of log-transformed 

nest counts overtim e for each beach and beach sum are In the Supplemental Material, Figure 54.

Figure 52. Residuals from a linear regression of the log transformed annual number of nests for 

Tepehuajes, Rancho Nuevo, and Barra del Tordo beaches summed (blue) and all beaches (red).
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Lack of fit of the linear model was evaluated by fitting a quadratic model (Equation S3) to the nest 

counts. If the quadratic coefficient Is significantly different from 0, there Is evidence of lack of fit of the  

linear model (Equation S2).

log N t ^  p o +  P i t  +

Normal(0, o^)

(S3)

There Is no evidence of lack of fit of the linear model. The p-values for the test oi P 2 — ^^e 0.34 for

Sum3 and 0.94 for SumAII. The same conclusion Is reached for all beaches (Table S I) except Miramar, 

where the log transformed number of nests Increased rapidly from 1997 to 2002, then Increased more 

slowly (Figure S4).
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Table S I. Diagnostic test results for linear regressions (Equation 52) fit to each beach and beach sum.
LOF p-value is the p-value for lack-of-fit based on the quadratic coefficient, Equation (S3). Large p- 

values indicate no evidence of lack of fit of the linear regression. Lag 1 correlation is the correlation 

between residuals from the linear regression from adjacent years (e.g. 2002 and 2003). AlCc statistics 

are for three possible models for the correlation between observations over time: uncorrelated, AR(1), 

and MA(1). The smallest AlCc value is underlined and indicates the most appropriate of these three 

models for each beach or beach sum.

Beach LOF Lag 1 AlCc statistics
p-value Correlation Uncorrelated AR(1) MA(1)

sum3 0.34 -0.14 -4.31 -1.60 -1.59

sumAII 0.94 -0.32 2.85 5.56 5.78

sumMx 0.96 -0.33 2.94 5.62 5.86

La Pesca 0.20 -0.44 27.97 29.42 29.63

Tep 0.11 -0.19 19.56 22.12 22.17

Rancho Nuevo 0.10 -0.10 -0.52 2.22 2.22

Barro del Tordo 0.47 0.14 17.56 18.70 19.00

Miramar 0.0002 0.26 34.37 31.42 36.16

Altamira 0.22 -0.16 23.37 26.44 26.44

Texas 0.08 0.00 27.33 30.21 30.34

Because the data are collected over time, we evaluate whether it is necessary to account for 

autocorrelation among residuals. W e do this two ways: using the autocorrelation function (i.e., the 

correlation between pairs of residuals as a function of the lag between the two observations), and by 

fitting models with two different correlation structures. These two approaches complement each other. 

The autocorrelation function provides a visual assessment of correlations at multiple lags but is based on 

residuals from a model fit assuming no correlation. Model fitting incorporates possible correlation into 

the model fit but requires specifying the correlation model.

The autocorrelation functions indicate no concerns about correlation between adjacent observations 

(Figure S3). The most extreme correlations are at lag 4 (observations separated by 4 years, e.g. 2002 

and 2006), but both (Sum3 and SumAII) are within the variability expected if observations are 

uncorrelated and there is no biological basis for such a correlation. The estimated autocorrelations 

between residuals in adjacent years (e.g. 2001 and 2002) and at lag 2 (e.g. 2001 and 2003) are also 

within the variability expected from estimates from 19 (Sum3) or 13 (SumAII) uncorrelated observations.

W e consider three models to evaluate autocorrelation in the error terms associated with the linear 

regression model. Two models with correlated errors are the autoregressive order 1, AR(1), model and 

the moving average order 1, MA(1), model. Under the AR(1) model, all pairs of observations are 

correlated, but the correlation is most extreme for adjacent observations (e.g. 2002 and 2003). Under 

the MA(1) model the only non-zero correlation is between adjacent observations. The fit of these
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models Is compared to the fit of the model with no correlation (Equation 2) using the AlCc statistic 

(small-sample-corrected AlC statistic). The model with the smallest AlCc value Is the most appropriate 

of the models under consideration. The uncorrelated model has the smallest AlCc value for both the 

Sum3 and the SumAII nest count (Table 51). Similar patterns are seen for all other beaches and beach 

sums except for Miramar, where the AR(1) model Is the most appropriate.

Figure S3. Plot of the autocorrelation between pairs of residuals from the log-linear model (Equation 
2) separated by different lags. Blue lines show results for Sum3; red lines show results for SumAII. Lag 

1 pairs are those for adjacent years, lag 2 pairs are those 2 years apart, and so forth. The dashed lines 

Indicate approximate critical values for an a = 0.05 test of no autocorrelation.
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Appendix 3. Estimated regression coefficients from fitting Equation (4) to each individual beach and 
two beach sums. Results for SumAII are given In Table 3. The estimated regression coefficients for each 

Indicator variable give the difference on a log scale between the projected number of nests and what 

was observed in that year. These log-scale differences can be expressed as percentages of the expected 

nest count by exponentiating the estimate. The 95% confidence interval is calculated by exponentiating 

the 95% confidence Interval for the regression estimate.

Beach Year Estimate Std.
Error

p value Percent of 
Expected

95% Confidence 
Interval

La.Pesca 2010 -1.072 0.476 0.0437 34% (13%, 87%)

La.Pesca 2011 -0.66 0.488 0.2013 52% (20%, 135%)

La.Pesca 2012 -0.872 0.502 0.1078 42% (16%, 112%)

La.Pesca 2013 -1.553 0.517 0.0110 21% (8%, 58%)

La.Pesca 2014 -2.377 0.533 0.0008 9% (3%, 26%)

Tep 2010 -0.878 0.298 0.0090 42% (23%, 75%)

Tep 2011 -0.933 0.303 0.0067 39% (22%, 71%)

Tep 2012 -0.859 0.307 0.0124 42% (23%, 77%)

Tep 2013 -1.507 0.312 0.0002 22% (12%, 41%)

Tep 2014 -1.294 0.318 0.0008 27% (15%, 51%)

RN 2010 -0.501 0.165 0.0075 61% (44%, 84%)

RN 2011 -0.138 0.168 0.4226 87% (63%, 121%)

RN 2012 -0.288 0.17 0.1089 75% (54%, 105%)

RN 2013 -0.871 0.173 0.0001 42% (30%, 59%)

RN 2014 -1.47 0.176 0.0000 23% (16%, 32%)

BT 2010 -0.503 0.281 0.0911 60% (35%, 105%)

BT 2011 -0.657 0.285 0.0342 52% (30%, 91%)

BT 2012 -0.647 0.29 0.0394 52% (30%, 92%)

BT 2013 -0.137 0.295 0.6479 87% (49%, 155%)

BT 2014 -0.591 0.3 0.0653 55% (31%, 100%)

Altamira 2010 -0.457 0.394 0.2684 63% (29%, 137%)

Altamira 2011 -0.379 0.404 0.3672 68% (31%, 151%)

Altamira 2012 -0.316 0.416 0.4613 73% (32%, 165%)

Altamira 2013 -0.561 0.428 0.2145 57% (25%, 132%)

Altamira 2014 -0.763 0.441 0.1092 47% (20%, 111%)

Texas 2010 -0.562 0.497 0.2818 57% (22%, 151%)

Texas 2011 -0.496 0.512 0.3537 61% (22%, 166%)

Texas 2012 -0.724 0.528 0.1977 48% (17%, 136%)

Texas 2013 -1.314 0.546 0.0348 27% (9%, 78%)

Texas 2014 -1.843 0.565 0.0076 16% (5%, 48%)

sum3 2010 -0.554 0.148 0.0016 57% (43%, 77%)

sum3 2011 -0.268 0.15 0.0916 76% (57%, 103%)

sumB 2012 -0.387 0.152 0.0210 68% (50%, 92%)
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Beach Year Estimate Std.
Error

p value Percent of 
Expected

95% Confidence 
Interval

sum3 2013 -0.827 0.155 0.0001 44% (32%, 59%)

sum3 2014 -1.319 0.158 0.0000 27% (20%, 36%)

sumMx 2010 -0.591 0.164 0.0042 55% (40%, 76%)

sumMx 2011 -0.32 0.169 0.0843 73% (52%, 101%)

sumMx 2012 -0.428 0.174 0.0319 65% (46%, 92%)

sumMx 2013 -0.879 0.18 0.0005 42% (29%, 59%)

sumMx 2014 -1.352 0.187 0.0000 26% (18%, 37%)
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Appendix 4. Differences In observed and projected nest counts for each beach and beach sums, except 

for M iram ar and SumAII (in Table 3 ). Positive numbers are numbers of "lost" nests (projected -  

observed). Negative numbers represent more nests than expected.

Beach Year

Nest Difference Per Year 
(projected -  observed)

Cumulative Nest Difference

Median
95% Prediction 

Interval
Median

95% Prediction 
Interval

La. Pesca 2010 400 (-10, 1600) 400 (-10, 1600)

La. Pesca 2011 350 (-130, 1910) 820 (30, 2960)

La. Pesca 2012 530 (-90, 2450) 1420 (130, 4640)

La. Pesca 2013 890 (100, 3560) 2390 (470, 7410)

La. Pesca 2014 1290 (250, 4880) 3780 (1030, 10870)

Tep 2010 1730 (330, 4590) 1730 (330, 4590)

Tep 2011 2040 (470, 5160) 3910 (1430, 8310)

Tep 2012 2220 (290, 5910) 6320 (2500, 12300)

Tep 2013 3440 (1290, 7710) 9880 (4740, 18090)

Tep 2014 3670 (1130, 8820) 13630 (6960, 25210)

RN 2010 6500 (1520, 13310) 6500 (1520, 13310)

RN 2011 2420 (-3430, 11210) 9050 (470, 20730)

RN 2012 5580 (-1200, 15230) 15130 (2450, 31650)

RN 2013 15360 (7070, 27640) 30760 (12260,53690)

RN 2014 24340 (14460, 38680) 55410 (31330, 86020)

BT 2010 870 (-150, 2790) 870 (-150, 2790)

BT 2011 1230 (20, 3540) 2170 (350, 5330)

BT 2012 1430 (60, 3920) 3730 (960, 8130)

BT 2013 450 (-1200, 3920) 4370 (390, 10660)

BT 2014 1900 (-160, 5560) 6350 (1160, 14700)

Miramar 2010 23850 (16390, 35320) 23850 (16390,35320)

Miramar 2011 28050 (18900, 41540) 52140 (38590, 73020)

Miramar 2012 32860 (21690,50930) 85230 (64340, 118460)

Miramar 2013 39310 (25840, 60120) 125100 (93730,170450)

Miramar 2014 46280 (29690, 71850) 171340 (128390, 231950)

Altamira 2010 230 (-160, 1170) 230 (-160, 1170)

Altamira 2011 220 (-230, 1290) 500 (-250, 2090)

Altamira 2012 220 (-300, 1690) 780 (-370, 3250)

Altamira 2013 410 (-200, 2070) 1250 (-350, 4780)

Altamira 2014 570 (-110, 2650) 1880 (-220, 6590)

Texas 2010 110 (-70, 660) 110 (-70, 660)

Texas 2011 120 (-100, 850) 260 (-100, 1280)

Texas 2012 220 (-80, 1310) 520 (-100, 2210)

Texas 2013 410 (10, 1840) 970 (20, 3580)
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Beach Year

Nest Difference Per Year 
(projected -  observed)

Cumulative Nest Difference

Median
95% Prediction 

Interval
Median

95% Prediction 
Interval

Texas 2014 620 (90, 2780) 1660 (250, 5670)

sum3 2010 9150 (3160, 17090) 9150 (3160, 17090)

sum3 2011 6040 (-810, 15530) 15350 (4630, 28050)

sum3 2012 9560 (1070, 20880) 24980 (9130, 44970)

sum3 2013 19640 (9550, 32670) 45050 (24620, 71860)

sum3 2014 29850 (17820, 46520) 75350 (46660, 111550)

sumMx 2010 10870 (3400, 22340) 10870 (3400, 22340)

sumMx 2011 7810 (-1340, 21300) 18910 (5360, 39790)

sumMx 2012 11670 (510, 29740) 30830 (9930, 64050)

sumMx 2013 23240 (9770, 44050) 54620 (23260, 99980)

sumMx 2014 34660 (18060, 60230) 89240 (46290, 149850)
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Figure S4. Plots of nest counts over time for all beaches and the SumMX beach sum. Note: the Y axis 

is on a log scale.
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Figure S4 continued, 
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Figure S5. Plots of the prediction intervals for 2010 through 2014 for each individual beach and the 
Sum3 and SumMX beach sums. Predictions intervals are computed using the varying trend model 

(Equations 8-10) for Miramar, because that because showed substantial lack of fit to the linear model 

and evidence of autocorrelated errors. Prediction intervals for all other beaches and for the two beach 

sums are computed using the constant trend model.
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Figure S5 continued.
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Figure S5 continued.

Prediction intervals for Miramar are large in 2011 and very large in 2012 and later. Those intervals 

without upper or lower caps indicate where the interval extends outside the plot boundaries.
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Appendix 5: R and BUGS code used for the analyses.

# kemp Im.r: fit various regr In two  forms:
# all years with post-oll Indicators
# up through 2009

llbrary(lme4)
llbrary(nlme)

fit.glmod <- fit.lm <- flt.lm2 <- fit.ar <- fit.m a <- flt.m a2 <- 
flt09.lm  <- flt09.lm 2 <- flt09.ar <- flt09.m a <- flt09.m a2 <- 
as.llst(rep(0, 10))

kr$yearc <- kr$Year -1 991  
kr$l2010 <- (kr$Year == 2010)+0 
kr$l2011 <- (kr$Year == 2011)+0 
kr$l2012 <- (kr$Year == 2012)+0 
kr$l2013 <- (kr$Year == 2013)+0 
kr$l2014 <- (kr$Year == 2014)+0 
kr$id <- as.factor(l:24)

kr09$yearc <- kr09$Year -1 9 9 1

for (i in 1:10) { 
kr$ncount <- kr[,l+ l] 
kr$lncount <- kr[,l+ l]

flt.glmod[[l]] <- glm(ncount ~ yearc + 12010 + 12011 + 12012 + 12013 +
12014, data^kr, famlly^quaslpolsson) 

flt.lm [[l]] <- gls(log(ncount) ~ yearc + 12010 + 12011 + 12012 + 12013 +
12014, data=kr, na.actlon=na.omlt) 

flt.lm 2[[i]] <- gls(log(ncount) ~ yearc + l(yearc^2) + 12010 + 12011 + 12012 + 12013 + 
12014, data=kr, na.actlon=na.omlt)

flt.ar[[l]] <- gls(log(ncount) ~ yearc + 12010 + 12011 + 12012 + 12013 +
12014, data=kr, corr=corARl(), na.actlon=na.om lt) 

flt.m a[[l]] <- gls(log(ncount) ~ yearc + 12010 + 12011 + 12012 + 12013 +
12014, data=kr, corr=corARMA(p=0, q = l), na.action=na.om lt) 

flt.m a2[[l]] <- gls(log(ncount) ~ yearc + 12010 + 12011 + 12012 + 12013 +
12014, data=kr, corr=corARMA(p=0, q=2), na.action=na.om lt)

kr09$ncount <- kr09[,i+l] 
kr09$lncount <- Iog(kr09[,l+1])

flt09.lm [[l]] <- gls(log(ncount) ~ yearc, data=kr09, na.actlon=na.omlt) 
flt09.lm 2[[l]] <- gls(log(ncount) ~ yearc +l(yearc^2), data=kr09, na.actlon=na.omlt) 
flt09.ar[[l]] <- gls(log(ncount) ~ yearc, data=kr09, corr=corARl(), na.action=na.om lt) 
flt09.m a[[i]] <- gls(log(ncount) ~ yearc, data=kr09, corr=corARMA(p=0, q = l),
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na.action=na.om it)
fit09.m a2[[i]] < -gls(log(ncount) ~yearC; data=kr09, corr=corARMA(p=0, q=2), 

na.action=na.om it)
}

lof.all <- sapply(fit09.lm2, function(x){summary(x)$tTable[3,4]}) 
lagl.all <- sapply(fit09.lm, function(x) { 

acf(resid(x))$acf[2,l,l]})

aic.all <- rbind( Im = sapply(fit.lm, AlC), a r l  = sapply(flt.ar, AlC), 
m a l = sapply(flt.ma, AlC), ma2=sapply(flt.ma2, A lC )) 

dlmnames(alc.all)[[2]] <- beachnames

alc.all09 <- rblnd( Im = sapply(flt09.lm, AlC), a r l  = sapply(flt09.ar, AlC), 
m a l = sapply(flt09.ma, AlC), ma2 = sapply(flt09.ma2, A lC )) 

dlmnames(alc.all09)[[2]] <- beachnames

write.csv(t(rbind(lof=lof.all, lagl=lagl.all, aic.all09[-4,])), file='diag.csv')
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# kemp.r: Read data files,
# Fit all beaches individually, only data through 2009
# fits process error and varying slope models

mx <- read.csv('MX beaches.csv', as.is=T)
tx <- read.csv('TX Beach KR counts DS.csv', as.is=T)

kr <- cbind(mx, Texas=c(rep(NA, 6), tx$nests), 
sum3 = mx$Tep + mx$RN + mx$BT, sumMx = apply(m x[,2:7],l, sum)

kr$sumAII <- kr$sumMx + kr$Texas

kr09 <- kr[kr$Year <= 2009, ]

beachnames <- names(kr09)[-l]

kemp.param <- c('sigma', 'bO', '10', 'my') 
kempb.param <-c('sigma', 'b', 'bO', '10', 'my') 
kempKM.param <-c('sigma', 'b', 'bO', '10', 'my', 'z')

kemp.Sim.inits <- function(n) {
# initial values when precision given 1/Unif^2, as per Gelman
# for kemp2grp.txt model (no uncertain shift in 2010)

list( bO = rnorm (l), sb=runif(l), sl=runif(l), sy = runif(l) )
}

kemp.inits <- list( 
kemp.sim.inits(n), kemp.sim.inits(n), kemp.sim.inits(n))

kempKM.sim.inits < - function(n) {
# initial values when precision given 1/Unif^2, as per Gelman
# for kemp2grp.txt model (no uncertain shift in 2010)

list( bO = rnorm (l), sb=runif(l), sl=runif(l), sy = runif(l).
Model = l+ rb in o m (l,l, 0.5) )

}

kempKM.inits <- list( 
kempKM.sim.inits(n), kempKM.sim.inits(n), kempKM.sim.inits(n))

neach <- 30000

nbeach <- d im (kr09)[2]-l # number of beaches in kr09

fit09.beach <- fit09.beachb <- as.list(rep(0, nbeach))
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for (i in l:nbeach) { 
nests <- kr09[,l+ l] # number of nests on beach I 
If (any(ls.na(nests))) { 

nests <- nests[-(l:sum(ls.na(nests)))]
}

# remove NA's at beginning of sequence

kemp.data <- list(n=length(nests), y=log(nests), pi.m odel=c(0.5,0.5))

# constant slope model
fit09.beach[[i]] <- bugs(data = kemp.data, inits = kemp.inits, 

parameters.to.save = kemp.param, 
modei.file = "kemp.txt", 

n.chains = 3, 
n.iter = 10000+neach, 
n.burnin = 10000, 
n.sims=neach/10, 
debug = TRUE,
bugs.directory = "C:/Program Files/WinBUGS14/",

# program = "WinBUGS" 
program = "OpenBUGS"

)

# b follows random walk

fit09.beachb[[i]] <- bugs(data = kemp.data, inits = kemp.inits, 
parameters.to.save = kempb.param, 
modei.file = "kempb.txt", 
n.chains = 3, 
n.iter = 10000+neach, 
n.burnin = 10000, 
n.sims=neach/10, 
debug = TRUE,
bugs.directory = "C:/Program Files/WinBUGS14/",

# program = "WinBUGS" 
program = "OpenBUGS"

)

}

all.DIC09 <- matrix(NA, nrow=2, ncohnbeach) 
all.D IC09[l,] <- sapply(fit09.beach, function(x){x$DIC}) 
all.DIC09[2,] <- sapply(fit09.beachb, function(x){x$DIC}) 
dimnames(all.DIC09) <- list( c('constant', 'varies'), beachnames)

all.pd09 <- matrix(NA, nrow=4, ncol=nbeach) 
all.pd09[l,] <- sapply(fit09.beach, function(x){x$pD})
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all.pd09[2,] <- sapply(fit09.beachb, function(x){x$pD})
all.pd09[3,] <- sapply(fit09.beach, function(x){temp <- x$sims.list$deviance;

mean(temp) + var(tem p)/2 }) 
all.pd09[4,] <- sapply(fit09.beachb, function(x){temp <- x$sims.list$deviance; 

mean(temp) + var(tem p)/2 })

dimnames(all.pd09) <- list( c('constant: BUGS', 'varies: BUGS',
'constant: Gelman', 'varies: Gelman'), beachnames)
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# kempZ.r: Fit all beaches Individually, only data through 2009
# only fitting log linear regression model in state space form

# relies on data sets setup by kemp.r 

kemp2.param <- c('sigma', 'bO', T) 

kemp2.sim.inits < - function(n) {
# initial values when precision given 1/Unif^2, as per Gelman
# for kemp2.txt model

list( bO = rnorm (l), sy = ru n if ( l) )
}

kemp2.inits <- list( 
kemp2.sim.inits(n), kemp.sim.inits(n), kemp.sim.inits(n) )

neach <- 30000

fit09.beach2 < - as.list(rep(0, nbeach))

for (I In Im beach) { 
nests <- kr09[,i+ l] # number of nests on beach i 
if (any(ls.na(nests))) { 

nests <- nests[-(l:sum(is.na(nests)))]
}

# remove NA's at beginning of sequence 

kemp.data <- list(n=length(nests), y=log(nests))

# log linear regression model
fit09.beach2[[i]] <- bugs(data = kemp.data, inits = kemp2.inits, 

parameters.to.save = kemp2.param, 
modei.file = "kemp2.txt", 

n.chains = 3, 
n.iter = 10000+neach, 
n.burnin = 10000, 
n.sims=neach/10, 
debug = TRUE,
bugs.directory = "C:/Program Files/WinBUGS14/",

# program = "WinBUGS" 
program = "OpenBUGS"

)

}
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# kem p.txt BUGS code for process error model

model
{
l[l] <-10
m y[l] ~ dnorm (l[l], taul)

for (I In 2:n) {

l[l] <- m y[l-l] + bO 
my[l] ~ dnorm(l[l], taul)
}

for (I In l:n ) { 
y[l] ~ dnorm(my[l], tauy)

}

# priors
10 ~ dnorm(0, 0.001) 
bO ~ dnorm(0, 0.001)

taul <- pow(sl, -2) 
sl~dunlf(0 ,10)

tauy <- pow(sy, -2) 
sy ~ dunlf(0,10)

slgma[l] <- 0 
slgma[2] <- l/sqrt(taul) 
slgma[3] <- l/sqrt(tauy)

}
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# kem p2.txt BUGS code for constant slope model

model
{
l[l] <-10 

for (I In 2:n) {

l[l] <- l[l-l] + bO
}

for (I In l:n ) { 
y[l] ~ dnorm(l[l], tauy)
}

# priors
10 ~ dnorm(0, 0.001) 
bO ~ dnorm(0, 0.001)

tauy <- pow(sy, -2) 
sy ~ dunlf(0,100)

sigma <- l/sqrt(tauy)

}
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# kem pb.txt BUGS code for varying slope model

model
{
b [l] <- bO 
l[l] <-10
m y[l] ~ dnorm (l[l], taul)

for (I In 2:n) { 
mb[l] <- b [l-l] 
b[l] ~ dnorm(mb[l], taub)

l[l] <- m y[l-l] + b[l] 
my[l] ~ dnorm(l[l]; taul)
}

for (I In l:n ) { 
y[l] ~ dnorm(my[l], tauy)
}

# priors
10 ~ dnorm(0, 0.001) 
bO ~ dnorm(0, 0.001)

taub <- pow(sb, -2) 
sb ~ dunlf(0,10)

taul <- pow(sl, -2) 
sl~dunlf(0 ,10)

tauy <- pow(sy, -2) 
sy ~ dunlf(0,10)

slgma[l] <- l/sqrt(taub) 
slgma[2] <- l/sqrt(taul) 
slgma[3] <- l/sqrt(tauy)

}
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